翻訳と辞書
Words near each other
・ Superconducting logic
・ Superconducting magnet
・ Superconducting magnetic energy storage
・ Superconducting nanowire single-photon detector
・ Superconducting quantum computing
・ Superconducting radio frequency
・ Superconducting steel
・ Superconducting Super Collider
・ Superconducting tunnel junction
・ Superconducting wire
・ Superconductivity
・ Superconductor classification
・ Superconductor Insulator Transition
・ Superconductor Science and Technology
・ Superconference
Superconformal algebra
・ Supercontinent
・ Supercontinent cycle
・ Supercontinuum
・ Superconvergence
・ Supercool (band)
・ Supercooling
・ SuperCoolNothing
・ SuperCoolNothing V2.0
・ Supercoop
・ Supercop (soundtrack)
・ Supercopa
・ Supercopa Argentina
・ Supercopa ASOBAL
・ Supercopa Centroamericana


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Superconformal algebra : ウィキペディア英語版
Superconformal algebra

In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. It generates the superconformal group in some cases (In two Euclidean dimensions, the Lie superalgebra does not generate any Lie supergroup.).
In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, there is a finite number of known examples of superconformal algebras.
== Superconformal algebra in 3+1D ==
According to,〔
〕 the \mathcal=1 superconformal algebra in 3+1D is given by the bosonic generators P_\mu, D, M_, K_\mu, the U(1) R-symmetry A, the SU(N) R-symmetry T^i_j and the fermionic generators Q^, \overline^_i, S^\alpha_i and . Here, \mu,\nu,\rho,\dots denote spacetime indices; \alpha,\beta,\dots left-handed Weyl spinor indices; \dot\alpha,\dot\beta,\dots right-handed Weyl spinor indices; and i,j,\dots the internal R-symmetry indices.
The Lie superbrackets of the bosonic conformal algebra are given by
:()=\eta_M_-\eta_M_+\eta_M_-\eta_M_
:()=\eta_P_\mu-\eta_P_\nu
:()=\eta_K_\mu-\eta_K_\nu
:()=0
:()=-P_\rho
:()=+K_\rho
:()=-2M_+2\eta_D
:()=0
:()=0
where η is the Minkowski metric; while the ones for the fermionic generators are:
:\left\_ = 2 \delta^j_i \sigma^_ = \left\ \right\} = 0
:\left\_ \right\} = 2 \delta^i_j \sigma^_ = \left\ \right\} = 0
:\left\ =
:\left\ = \left\ = 0
The bosonic conformal generators do not carry any R-charges, as they commute with the R-symmetry generators:
:()=()=()=()=0
:()=()=()=()=0
But the fermionic generators do carry R-charge:
:()=-\fracQ
:()=\frac\overline
:()=\fracS
:()=-\frac\overline
:()= - \delta^i_k Q_j
:()= \delta^k_j _k" TITLE="T^i_j,\overline_k">)= - \delta^i_k \overline_j
Under bosonic conformal transformations, the fermionic generators transform as:
:()=-\fracQ
:()=-\frac\overline
:()=\fracS
:()=\frac\overline
:()=()=0
:()=()=0




抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Superconformal algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.