|
In theoretical physics, the superconformal algebra is a graded Lie algebra or superalgebra that combines the conformal algebra and supersymmetry. It generates the superconformal group in some cases (In two Euclidean dimensions, the Lie superalgebra does not generate any Lie supergroup.). In two dimensions, the superconformal algebra is infinite-dimensional. In higher dimensions, there is a finite number of known examples of superconformal algebras. == Superconformal algebra in 3+1D == According to,〔 〕 the superconformal algebra in 3+1D is given by the bosonic generators , , , , the U(1) R-symmetry , the SU(N) R-symmetry and the fermionic generators , , and . Here, denote spacetime indices; left-handed Weyl spinor indices; right-handed Weyl spinor indices; and the internal R-symmetry indices. The Lie superbrackets of the bosonic conformal algebra are given by : : : : : : : : : where η is the Minkowski metric; while the ones for the fermionic generators are: : : : : The bosonic conformal generators do not carry any R-charges, as they commute with the R-symmetry generators: : : But the fermionic generators do carry R-charge: : : : : : : Under bosonic conformal transformations, the fermionic generators transform as: : : : : : : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Superconformal algebra」の詳細全文を読む スポンサード リンク
|